JOURNAL OF COMPUTATIONAL PHYSICS 111, 49-52 (1994)

Neumann-Type Expansion of Coulomb Functions
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An expansion is derived for the regular (power series} part of the
Coulomb function, Gg(n. ). in terms of Whittaker functions, which are
closely related to the regular Coulomb functions £,(#n, o). The expan-
sion coefficients are given as a sum of three terms; each of the terms
obeys a simple three-term recurrence relation. In conmjunction with the
downward recurrence method for the regular functions {which is also
discussed), this expansion is very useful for computing the irregular
Coulomb functions G,{n, p), n particular for an attractive potential
(< 0) and for small or moderately large values of g ©1994 Academic
Press, inc.

While the Coulomb functions have attracted considerable
interest for a rather long time [ 17, original contributions
are still produced nowadays [2]. Apart from their intrinsic
value, this research is also motivated by the need for rapid
and accurate computations in many branches of physics.
In particular, numericai solution of problems with an
attractive Coulomb potential in solid-state physics requires
special computational care, ¢.g., using a logarithmic
mesh. These solution can be considerably simplified [3] if
the Coulomb part of the potential is solved in terms
of Coulomb functions. The present note shows that a
Neumann-type series representation can be found for the
Coulomb functions which finally results in a very elegant
and convenient algorithm for their computation.

1t is well known that the Neumann functions Y,{z) can be
expressed as a serics of Bessel functions J,(z). usually
refered to as a Neumann series [ 4, p. 67; 5]. For example,
for n =0 we have
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This series and its generalization for non-integer v are very
useful for computation [6]: they converge fairly rapidly for
small or moderately large arguments, and all terms of the
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series are small because |J(z)| <1 for real z and v=0.
Therefore no accuracy is lost owing to small numbers being
expressed as differences of large numbers. The Bessel func-
tions J,(z) can be computed by the downward recursion
method [7-8]. This method yields a sequence of Bessel
functions (whose orders differ by unity) times an unknown
factor, which can be determined by the normalization
relation [4, p. 138]
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It is the purpose of this paper to establish the analog of
Egs. (2) and (1) for the regular and irregular Coulomb
functions whose definition [5] we briefly recall here: Any
solution of the differential equation
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(which is the radial Schrédinger equation in the presence of
the Coulomb potential of a charge Z) is called a Coulomb
function. Traditionally, the standard fundamentai system
of solutions F,(n, p} and G.(n, p) is chosen such that
F/{n, p)=~sin(8)) and G,(n, p) = cos(8,) for p — o, where 8,
contains the Coulomb phase shift [5]. Thus, we want to
express the integral powers of p as a series of Coulomb
functions F;(y, ), and to expand the regular part of the
irregular solution G,(n, p) in terms of the regular solutions.

The first problem can be disposed of very quickly by
recalling the connections between Coulomb functions and
Whittaker functions [9, p. 213 ]
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For the Whittaker functions we follow the notation and
definition of Buchholz [9],
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In Ref. [9, p. 131, Eq. (16b)] one can also find an expansion
of the powers of z in terms of regular Whittaker functions,
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where the P%#(x) are Jacobi polynomials as defined in [5].
Since the . {{,, 1+ 1,2{2ip) are real (pure imaginary) for odd
(even) /, we define the function

Mf(qﬁ P) = 3

Lty 14 1n(2ip) (7)

which is real for real  and p. For /=0, by vsing Eq. (6) and
the recurrence relation of Jacobi polynomials (Eq. (22.7.1)
in [5]), one obtains the following relation for the coef-
ficients of M, (y, p):

p= '22 (2n+ 1) pain) M, (n, p)
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Po )= +7%) pS_ (n).
The recurrence relation for the Whittaker functions with
respect to 4 in terms of the functions M, (5, p) is given in

[9. Eq. (11a), p. 94],
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Equations (8) and (9) are all that are required to compute
the functions M ,(n, p) by the downward recursion method
in complete analogy to the well-known method for the
Bessel functions. It is then trivial to obtain the regular
Coulomb functions by means of Eqs. (4) and (7).

We now derive the expansion of the irregular solution
in terms of the regular ones by following the idea of
Neumann’s original derivation of the Neumann series
[4, Eq. (1), p. 67]. Since both F,(n, p) and G ,(#, p) are solu-
tions of Eq. (3), one can then define the Coulomb operators
Vi=p(d*/dp®)+ [p* — 2yp — I(1 + 1)] having the property

VM, (n, p) =11+ 1) M, (1, p). (10)

Now we make the following ansatz for a solution
Wy(n, p) of Eq. (3) for /=0 which is linearly independent of

M()(na p)-

Woln, p)=Mq(n, p)log p+ C+uln, p), (11)

where C is a constant and u(y, p) {which is entire in p) will
be expressed as a series in M, (n, p),

o
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The notation W,(#, p) was chosen in analogy with
M,(n, p) because this function is related to the Whittaker
function of the second kind, W, (z). It is evident from
Eg. (12) and the definition of M ,(n, p) (Egs. (5) and (7))
that u{n, p) has a second-order zero at p = 0. Since Wy(n, p)
is a solution of Eq. (3), one has
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where use was made of the recurrence relation for the
derivative of M,(n, p} as given by Eq. (42b) on page 47 of
[9]. The last term of Eq. (13) can be expanded into a series
of M, (5, p) by using Eq. (6) with /=0 and /=1, respec-
tively. Now we choose the constant C such that the first
term of the expansion of 2npC cancels the term — M(y, p)
in Eq. (13). It is easily seen that C=1/n. To expand the
remaining terms of Eq. (13} we note that a general three-
term recurrence relation, say

pf;:—l(p):(anp+bn)j;!(p]+cnpj;1+l(p)s (14)
can be iterated to obtain formally
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In gqur particular case, one obtains (from Eqs. (13} and (9))
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It can be shown quite easily that this series converges for all
finite values of # and p by using the known asymptotic
behaviour of the Whittaker functions for 4 — oo, Eq. (10)
on page 94 in [9], and crude estimates of the coefficients
which show that there exists a constant ¢ such that
su1) = O(I(n + c)).

In summary, Eq. (13) now reads
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which, upon using Eq. (10), produces a solution for u(n, p),
and therefore
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(18)
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nln+1)
is a solution of Eq. (3} for { = 0 which is linearly independent
of Fy(n, p). The only remaining problem is to express the
standard solution Gy{n, p) as a linear combination of
Win, p) and My(#, p). The final result is

Goln, p)=wi(n) Wyln, p)+m(n) Mo(n, p)

1/2
w(n)=(§ (e — 1)) ,

m(n)=Tlog 2+ Re ¥(1 +in) — ¥(1)— ¥(2)] win),

a,ln)=

(19)

where ¥P(z) is the logarithmic derivative of the gamma
function.

Since we derived this expansion mainly for computational
purposes, we now want to discuss some of its practical
aspects. The equations derived in this paper are very easily
implemented into an algorithm for the computation of
Fi{n, p)and G,(n, p) for fixed p and » and a sequence of
Fvalues. It is also useful for repeated calculations with the
same n and different p, since the coefficients which are inde-
pendent of p need only be calculated once. This algorithm
comprises the following steps: (i) Assign arbitrary starting
values (e.g., zero and one) to M, and M,_, for sufficiently
high £ (i1) Use the recurrence relation Eq. {$) downwards.
This gives M,, M,, M,, ... times an unknown normalization
constant; (iii} Calculate this normalization constant using
Eq. (8); (iv) Calculate F, using Eq. (4); (v) Calculate G,
from Egqs. (18) and (19); (vi)Calculate G, using the
Wronskian (as given, e.g., in Ref [5, Eq.(14.24)]);
(vii) Calculate G,, G5, ... by using the recurrence relation as
given, e.g., in Ref. [5, Eq. (14.2.3)]. It may seem surprising

that the starting values for the calculation of the M, in (i)
are arbitrary. However, this is a consequence of the strong
stability of the downward recursion. In the analogous case
of the Bessel functions, this is explained in detail in
Ref. [10]. For an attractive potential, this algorithm avoids
two commeon sources of numerical error, viz., cancellation
errors and unstable recurrence relations. In Table I we pre-
sent numerical studies of the properties of Eg. (18) com-
pared to the ascending serics for G,(#, p) (Eq. (14.1.17) in
Ref. [5]). As far as efficiency is concerned, Eq. (18} con-
verges somewhat faster, but that is not its major advantage
over the ascending series. The important point is that
individual terms in our Neumann-type expansion are never
significantly larger than the sum. By contrast, for y = —20
and p = 10 the largest term in the ascending series is about
16 orders of magnitude larger than the sum: this means that
the sum has 16 fewer significant digits than the terms—or no
significant digit at all if ordinary floating point arithmetic
with about 15 digits is used. The Neumann-type expansion,
on the other hand, shows very few cancellation errors even
for fairly large values of || and p.

In summary, this method is best suited for small |3 and
p, but gives accurate results even for larger p (where
methods based on asymptotic expansions and continued
fractions are probably more efficient) and for larger |»|. For
very high vaiue |4|, the Bessel functions expansicon of Hum-
blet [2] is recommended instead. We have also verified that
no significant cancellation errors occur in any other part of
the algorithm, in particular in Eq. (8). (This dees not hold
for a repulsive potential: for g > 0, the two terms in Eq. (19)

TABLE I

Numerical properties of (a) the Neumann-type expansion
Eq. (23) and (b) the ascending series, Eq. {14.1.17) in Ref. [5], for
GD(Q: P)

p=1 p=2 p=35 p=10

(a)
n=—1 4 0 0 17 0 0 24 0 0 34 00
n=-5 6 -1 -1 20 0-2 22 0 0 36 00
n=—10 17 0 -1 21 =1 -1 28 0 0 38 0 0
p=--20 20 -1 -2 24 0 0 32 -1 -1 44 -1 0
n=—50 24 —1 —1 32 -1 -2 42 —1 —1 355 -1 0

{b)
n= -1 19 1 0 23 1 0 37 2 0 53 50
=-S5 21 3 0 26 4 0 4 6 0 56 8 1
= —10 4 4 ¢ 29 5 1 43 9 0 62 2 0
p=-20 29 6 1 37 B -1 50 12 1 69 17 1
= —350 40 9 1 5012 1 70 20 1 92 27 1
Note. Foreach p, the first number is the number of terms required such

that the relative truncation error is Jess than 10~ ', The second number is
the order of magnitude of the largest term, defined as its decadic logarithm
rounded to the nearest integer. The third number is the order of magnitude
of the sum of the respective expansions.



52 MARKSTEINER, BADRALEXE, AND FREEMAN

are of almost the same magnitude and of opposite sign; this
restricts the usefulness of Eq. (18) to attractive potentials.)
We have also examined the numerical properties of other
expansions, eg., the expansion of Fy(x, p) in spherical
Bessel functions {Eq. (14.4.5) in [5]). This expansion shows
very large cancellation errors for negative » which then
severely restricts its usefulness for computational purposes.
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